Jeżeli wiemy więc, że jednorodny układ równań liniowych ma 1 rozwiązanie (a jest tak, kiedy ), to wiemy także, że jest to na pewno rozwiązanie zerowe. Jeżeli zaś wiemy, że jednorodny układ równań liniowych ma nieskończenie wiele rozwiązań (a jest tak, kiedy rozwiązania niezerowe.
Przenosimy wszystkie niewiadome na lewą stronę, inne liczby na prawą stronę. 2x+4x− 6x = −10+10. 0 = 0. Jest to równanie tożsamościowe, ponieważ możemy podstawić dowolne liczby, a zawsze będą one spełniały równość. Przykład 5. Dane jest równanie 100x− 50x = 100x+ 50x. Rozwiąż równanie liniowe.
Jest to niespójny układ równań. f) {2y - 1 = x {6y - 3x = 3. Podstawiamy wyrażenie x z pierwszego równania do drugiego równania: 6y - 3(2y - 1) = 3. Teraz upraszczamy równanie: 6y - 6y + 3 = 3. Teraz odejmujemy 6y od obu stron: 3 = 3. To jest tożsamość, co oznacza, że ten układ równań ma nieskończenie wiele rozwiązań, jest to
Takie równanie które ma nieskończenie wiele rozwiązań nazywamy nieoznaczonym. Możesz się też spotkać ze zwrotem tożsamościowe. Pokażę Ci teraz w jaki sposób możemy stwierdzić że równanie ma nieskończenie wiele rozwiązań. Spróbujmy rozwiązać to równanie. Mamy tutaj nawias więc w pierwszym kroku się go pozbędę.
Oba układy równań są nieoznaczone. Wystarczy, że pomnożysz pierwsze równania w tych układach odpowiednio razy - 3 oraz razy - 2. i otrzymasz drugie równanie. To oznacza, że dany układ równań jest nieoznaczony, czyli ma nieskończenie wiele rozwiązań. Rozwiązania pierwszego układu równań są postaci: (x, -x+2) A drugiego są
hukum istri minta cerai suami menolak menurut islam. kiedy równanie ma nieskończenie wiele rozwiązań ? Koli91: kiedy równanie ma nieskończenie wiele rozwiązań ? 6 lis 14:56 Basia: gdy da się sprowadzić do tożsamości niezależnej od x np. 2x−4 = 2(x−2) 2x−4 = 2x−4 2x−2x=−4+4 0=0 prawda dla każdego x 6 lis 14:59 czita: x2=−2 x2−3x=o 14 lis 17:45
RozwiązanieZatem nasz układ równań nie jest układem Cramera (nie ma jednego rozwiązania) i do jego rozwiązania nie można zastosować wzorów są 2 przypadki, albo układ jest sprzeczny (nie ma rozwiązań), albo ma nieskończenie wiele że, gdy pomnożymy drugie równanie przez -2, to otrzymamy następujący układ równań (równoważny wyjściowemu):\[\left\{\begin{array}{c}2x-6y=4\\2x-6y=-2\end{array}\right.\]Układ ten jest sprzeczny, ponieważ gdy odejmiemy równania stronami, to otrzymamy sprzeczność 0= nasz wyjściowy układ równań też jest sprzeczny (nie posiada rozwiązań). UWAGA Układ nie jest układem Cramera, ponieważ macierz główna układu (ozn. A) jest osobliwa (ma wyznacznik równy 0).
nieskończenie wiele rozwiązań układu równań Karla: układ równań { 4x+2y=10 6x+ay= 15 ma nieskończenie wiele rozwiązań, jeśli A. a=−1 B. a=0 C. a=2 D. a=3 bardzo prosze o pomoc, bo trochę tego nie rozumiem byłoby miło gdyby któś podał mi też kiedy układ ma tylko jedno ropzwiązanie a kiedy wcale 19 gru 18:49 ser: a=3 nieskonczenie wiele 19 gru 18:50 Karla: a mógłbyś powiedzieć dlaczego tak? 19 gru 18:51 ogipierogi: podstawiam w miejsce a, trójkę i mam układ ⎧4x+2y=10/razy 3 ⎩6x+3y=15/razy −2 wszystkie wyrazy się redukują i otrzymujesz 0=0 układ nieoznaczony, nieskończenie wiele rozwiązań 19 gru 19:00 19 gru 19:02
Przejdź do treściAkademia Matematyki Piotra CiupakaMatematyka dla licealistów i maturzystów Strona głównaDlaczego warto?O mnieOpinieKontaktChce dołączyć!Opublikowane w przez Matura maj 2011 zadanie 4 Układ równań {4x+2y=106x+ay=15 ma nieskończenie wiele rozwiązań, jeśli:Układ równań {4x+2y=106x+ay=15 ma nieskończenie wiele rozwiązań, jeśli:Chcę dostęp do Akademii! Dodaj komentarz Musisz się zalogować, aby móc dodać wpisuPoprzedni wpis Matura maj 2011 zadanie 5 Rozwiązanie równania x(x+3)−49=x(x−4) należy do przedziału:Następny wpis Matura maj 2011 zadanie 3 Wyrażenie 5a2−10ab+15a jest równe iloczynowi:
fever Użytkownik Posty: 13 Rejestracja: 1 kwie 2010, o 22:44 Płeć: Kobieta Lokalizacja: pk równanie ma nieskończenie wiele rozwiązań Równanie \(\displaystyle{ a^{2}x - 7 = 49x + a}\) ma nieskończenie wiele rozwiązań gdy: a = 7 a = -7 a = 0 a = 49 ? Przy moich wymysłach równanie przyjęło postać \(\displaystyle{ a ^{2} - a = 56}\) Nie wiem czy dobrze, ale nawet jesli, to utknęłam:/ rodzyn7773 Użytkownik Posty: 1659 Rejestracja: 12 lip 2009, o 10:44 Płeć: Mężczyzna Lokalizacja: Skierniewice/Rawa Maz. Podziękował: 8 razy Pomógł: 278 razy równanie ma nieskończenie wiele rozwiązań Post autor: rodzyn7773 » 3 kwie 2010, o 20:40 Aby to równanie było tożsamościowe to lewa strona musi być równa prawej. Porównaj odpowiednie współczynniki po lewej i prawej stronie równania. fever Użytkownik Posty: 13 Rejestracja: 1 kwie 2010, o 22:44 Płeć: Kobieta Lokalizacja: pk równanie ma nieskończenie wiele rozwiązań Post autor: fever » 3 kwie 2010, o 20:51 Wg tego co wywnioskowałam a musiało by być równe 8. kombinuje dalej . rodzyn7773 Użytkownik Posty: 1659 Rejestracja: 12 lip 2009, o 10:44 Płeć: Mężczyzna Lokalizacja: Skierniewice/Rawa Maz. Podziękował: 8 razy Pomógł: 278 razy równanie ma nieskończenie wiele rozwiązań Post autor: rodzyn7773 » 3 kwie 2010, o 22:16 Porównuje współczynniki: \(\displaystyle{ \begin{cases} a^2=49 \\ a=-7 \end{cases}}\) Ostateczne rozwiązanie to a=-7.
układ równań ma nieskończenie wiele rozwiązań jeśli